Хребты семги в кляре


Хребты лосося жаренные в кляре

Вход
  • Категории
    • Рецепты первых блюд
    • Рецепты вторых блюд
    • Рецепты напитков
    • Заготовки и закуски
    • Салаты
    • Рецепты изделий из теста
    • Соусы и маринады
    • Рецепты сладостей
    • Национальные Кухни
    • Блюда на праздники
    • Диетические блюда
    • Другое
    Рецепты первых блюд3848
    • Борщи
    • Ботвинья
    • Бульоны
    • Гаспачо
    • Капустняк
    • Кулеш
    • Лагман
    • Окрошка
    • Рассольник
    • Свекольник
    • Сладкие супы
    • Солянка
    • Супы
    • Уха
    • Харчо
    • Хаш
    • Шурпа
    • Щи
    Рецепты вторых блюд22258
    • Мясо
    • Рыба
    • Овощи
    • Суши и роллы
    • Субпродукты
    • Блюда из круп
    • Азу
    • Бефстроганов
    • Бешбармак
    • Биточки
    • Бифштекс
    • Блюда из яиц
    • Бризоль
    • Буженина
    • Блюда из гречки
    • Блюда из капусты
    • Блюда из картофеля
    • Блюда из курицы
    • Блюда из печени
    • Блюда из риса
    • Блюда из фасоли
    • Блюда из чечевицы
    • Гарниры
    • Голубцы
    • Грибные блюда
    • Гуляш
    • Долма
    • Жаркое
    • Запеканки
    • Зразы
    • Каши
    • Котлеты
    • Крокеты
    • Лазанья
    • Люля-кебаб
    • Мамалыга
    • Мусака
    • Мясо по-французски
    • Овощные блюда
    • Омлет
    • Отбивные
    • Паэлья
    • Плов
    • Полента
    • Рагу
    • Рататуй
    • Ризотто
    • Роллы
    • Ромштекс
    • Ростбиф
    • Соте
    • Стейк
    • Тефтели
    • Тортилья
    • Фрикадельки
    • Фрикасе
    • Цыпленок табака
    • Чахохбили
    • Шашлык
    • Шницель
    • Яичница
    Безалкогольные напитки(1920)
    • Айран
    • Какао
    • Квас
    • Кисель
    • Компоты
    • Кофе
    • Лимонад
    • Молочный коктейль
    • Мохито
    • Пунш
    • Сбитень
    • Смузи
    • Чай
    • Горячий Шоколад
    Алкогольные напитки(193)
    • Вина
    • Глинтвейн
    • Грог
    • Лимончелло
    • Коньяк
    • Бренди
    • Мартини
    • Настойки
    • Пунш
    Рецепты заготовок(1212)
    • Баклажаны на зиму
    • Грибы на зиму
    • Кабачки на зиму
    • Квашение
    • Консервация
    • Мочение
    • Огурцы на зиму
    • Перец на зиму
    • Помидоры на зиму
    • Салаты на зиму
    • Сушка заготовок
    Рецепты закусок(7818)
    • Бастурма
    • Бутерброды
    • Горячие закуски
    • Жульен
    • Закуски из грибов и овощей
    • Закуски из мяса и птицы
    • Закуски из рыбы и креветок
    • Заливное
    • Икра овощная
    • Канапе
    • Кимчи
    • Лечо
    • Лобио
    • Паштеты
    • Салатные заправки
    • Террин
    • Тосты
    • Фондю
    • Форшмак
    • Холодные закуски

Salmon Ridge Sno-Park Обзоры обновлены 2020

Я бы дал этому 5 звезд, но я не был большим поклонником участка гравия, который, вероятно, будет лучшим вариантом для тех, кто хочет разбить лагерь здесь. Тем не менее, я продолжил движение по гравийной дороге, выходящей из задней части участка, и нашел замечательное место, которое мне очень понравилось. Если бы я не пытался строить определенные планы на будущее, я бы остался ... Больше

Я бы дал этому 5 звезд, но я не был большим поклонником участка гравия, который, вероятно, будет лучшим вариантом для тех, кто хочет разбить лагерь здесь.Тем не менее, я продолжил движение по гравийной дороге, выходящей из задней части участка, и нашел замечательное место, которое мне очень понравилось. Если бы я не пытался строить определенные планы на будущее, я бы остался подольше - я все равно испытывал искушение!

О дороге, по которой я пошел и нашел место: когда я посетил, он был закрыт на расстоянии 2,2 мили, без очень доступного поворота. Я смог сделать это с трудом на моем довольно маленьком автомобиле, воспользовавшись для этого преимуществом полного привода, но другие могут столкнуться с трудностями и не захотят продолжать свой путь, если он будет закрыт как таковой в будущем.Тем не менее, на первой миле было несколько мест, которые подходили для автомобилей разных размеров, но многие из них были заняты к тому времени, когда я приехал туда рано вечером в пятницу. В итоге я зацепился за действительно маленькое пятно, что было замечательно, но в него было бы трудно уместить что-то больше, чем размер моего универсала.

Я действительно застрял в какой-то грязи в какой-то момент, добираясь до того места, которое я сделал - достаточно, чтобы одного полного привода было недостаточно, и мне пришлось проявить творческий подход, чтобы выбраться. Однако это была моя вина, поэтому я сохраняю 5 звезд за доступ к этому - тем более, что гравийный участок рядом с мощеной главной дорогой должен быть легким для большинства.

Мне очень понравилось его расположение - так близко к горе Бейкер. Мое конкретное место было недалеко от реки и ручья, поэтому я слышал звуки и того, и другого, что было совершенно прекрасно, вместе с окружающими горами и деревьями. Весь район был очень чистым. Похоже, что есть несколько более качественных сайтов, чем тот, который есть у меня, но они могут легко заполняться, исходя из моего опыта. Что касается шума, то единственный шум, который я слышу, - это чудесные звуки природы. Я снизил его до 4, потому что, если вы припаркуетесь на стоянке, вы наверняка услышите дорожный шум.

Ставлю 1 планку Verizon LTE, но хочу добавить, что крайне пятнистая. Большую часть площади я не получил. Ролик, в котором я оказался, получил 2 полосы LTE от Verizon - 3 с включенным бустером. Даже 2 стержня были медленными и ненадежными, но с усилителем они стали быстрыми и стабильно надежными. Если вам это нужно, я бы не стал полагаться на него из этого места, однако в целом, когда я ездил, там было больше ничего, чем что-либо пригодное для использования (однако без бустера для этого).

Я действительно очень хочу вернуться и провести здесь больше времени в какой-то момент в будущем. Это прекрасное место, в которое я быстро влюбился. Лично я бы не стал возвращаться за парком, но на проселочной дороге есть несколько удивительных мест.

.

проблем со здоровьем, связанных с аккумуляторами - Battery University

Узнайте, что можно и чего нельзя делать при обращении с аккумуляторами.

Батареи безопасны, но необходимо соблюдать осторожность при прикосновении к поврежденным элементам и при работе со свинцово-кислотными системами, имеющими доступ к свинцу и серной кислоте. В некоторых странах свинцовую кислоту называют опасным материалом, и это правильно. Свинец может быть опасен для здоровья при неправильном обращении.

Свинец

Свинец - токсичный металл, который может попасть в организм при вдыхании свинцовой пыли или проглатывании при прикосновении к рту руками, загрязненными свинцом.При попадании на землю частицы кислоты и свинца загрязняют почву и при высыхании переносятся по воздуху. Дети и зародыши беременных женщин наиболее уязвимы для воздействия свинца, поскольку их организм развивается. Избыточный уровень свинца может повлиять на рост ребенка, вызвать повреждение мозга, повредить почки, ухудшить слух и вызвать поведенческие проблемы. У взрослых свинец может вызвать потерю памяти и снизить способность к концентрации внимания, а также нанести вред репродуктивной системе. Также известно, что свинец вызывает высокое кровяное давление, нервные расстройства, боли в мышцах и суставах.Исследователи предполагают, что Людвиг ван Бетховен заболел и умер из-за отравления свинцом.

К 2017 году члены Международной свинцовой ассоциации (ILA) хотят поддерживать уровень свинца в крови рабочих горнодобывающих, плавильных, перерабатывающих и перерабатывающих предприятий на уровне ниже 30 микрограммов на децилитр (30 мкг / дл). В 2014 году средний участвующий сотрудник приходил на прием при 15,6 мкг / дл, но 4,8% были выше 30 мкг / дл. (Source Batteries & Energy Storage Technology, лето 2015.)

В 2019 году Университет Южной Калифорнии опубликовал данные об обнаружении свинца в зубах детей, живущих недалеко от завода по переработке батарей Exide Technologies в Верноне, штат Калифорния.


Рисунок 1: Свинец обнаружен в зубах младенцев возле завода по переработке аккумуляторов.


Свинец содержится в почве в естественных условиях на уровне 15–40 мг / кг. Этот уровень может многократно увеличиваться вблизи заводов по производству и переработке свинцовых аккумуляторов.Уровни загрязнения почвы свинцом в развивающихся странах, в том числе на африканском континенте, составляют 40–140 000 мг / кг. (См. BU-705: Как утилизировать батареи.)

Серная кислота

Серная кислота в свинцово-кислотных аккумуляторах очень агрессивна и более вредна, чем кислоты, используемые в большинстве других аккумуляторных систем. Попадание в глаза может вызвать необратимую слепоту; глотание повреждает внутренние органы, что может привести к летальному исходу. При оказании первой помощи необходимо промывать кожу в течение 10–15 минут большим количеством воды, чтобы охладить пораженные ткани и предотвратить вторичное повреждение.Немедленно снимите загрязненную одежду и тщательно промойте подлежащую кожу. При обращении с серной кислотой всегда надевайте защитное снаряжение.


Кадмий

Кадмий, используемый в никель-кадмиевых батареях, при попадании внутрь считается более вредным, чем свинец. Рабочие на заводах по производству никель-кадмиевых аккумуляторов в Японии испытывают проблемы со здоровьем из-за длительного воздействия металла, и правительства запретили утилизацию никель-кадмиевых батарей на свалках. Мягкий беловатый металл, который естественным образом встречается в почве, может повредить почки.Кадмий может проникнуть через кожу при прикосновении к разлитой батарее. Поскольку большинство никель-кадмиевых батарей герметично, обращение с неповрежденными элементами не представляет опасности для здоровья; осторожность требуется при работе с открытым аккумулятором.

Металлогидрид никеля считается нетоксичным, и единственное беспокойство вызывает электролит. Хотя никель токсичен для растений, он не опасен для человека.

Литий-ионный тоже безвреден - аккумулятор содержит мало токсичного материала. Тем не менее, при работе с поврежденным аккумулятором соблюдать осторожность.При обращении с разлитой батареей не касайтесь рта, носа или глаз. Тщательно вымойте руки.

Храните маленькие батарейки в недоступном для детей месте. Дети младше четырех лет чаще всего проглатывают батарейки, и чаще всего попадают внутрь батарейки. Ежегодно только в Соединенных Штатах более 2800 детей проходят лечение в отделениях неотложной помощи по поводу проглатывания батарейки. Согласно отчету за 2015 год, количество серьезных травм и смертей от проглатывания батареек за последнее десятилетие увеличилось в девять раз.

Батарея часто застревает в пищеводе (трубке, по которой проходит еда). Вода или слюна создают электрический ток, который может вызвать химическую реакцию с образованием гидроксида, едкого иона, который вызывает серьезные ожоги окружающих тканей. Врачи часто неправильно диагностируют симптомы, которые могут проявляться в виде лихорадки, рвоты, плохого аппетита и усталости. Батареи, которые проходят через пищевод, часто проходят через пищеварительный тракт с незначительными повреждениями или без них. Совет родителям - выбирать безопасные игрушки и держать батарейки подальше от маленьких детей.


Советы по безопасности

  • Храните кнопочные батарейки в недоступном для детей месте. Эти батарейки могут содержаться в пультах дистанционного управления, поздравительных открытках, часах, слуховых аппаратах, термометрах, игрушках и электрических ключах.
  • Как и в случае с фармацевтическими продуктами, держите незакрепленные батареи запертыми, чтобы к ним не могли добраться дети.
  • Сообщите детям, а также опекунам, друзьям, членам семьи и няням об опасности проглатывания батарейки.
  • Если вы подозреваете, что ваш ребенок проглотил батарею, немедленно обратитесь в больницу. Дождитесь медицинского обследования, прежде чем разрешать ребенку есть и пить.
.

типов аккумуляторных элементов; Цилиндрическая ячейка, таблеточная ячейка, мешочная ячейка

Сравните плюсы и минусы цилиндрического элемента, элемента-пуговицы, призматического элемента и футляра.

По мере того, как батареи начали массовое производство, конструкция банки изменилась на цилиндрический формат. Большая F-ячейка для фонарей была представлена ​​в 1896 году, а D-ячейка последовала за ней в 1898 году. С потребностью в меньших ячейках, в 1900 году последовала C-ячейка, а в 1907 году появился популярный AA.См. BU-301: Стандартизация батарей в соответствии с нормами.

Цилиндрическая ячейка

Цилиндрический элемент продолжает оставаться одним из наиболее широко используемых стилей упаковки первичных и вторичных батарей. Преимущества - простота изготовления и хорошая механическая стабильность. Трубчатый цилиндр может выдерживать высокое внутреннее давление без деформации.

Многие цилиндрические элементы на основе лития и никеля содержат переключатель с положительным тепловым коэффициентом (PTC). Под воздействием чрезмерного тока нормально проводящий полимер нагревается и становится резистивным, останавливая ток и действуя как защита от короткого замыкания.После устранения короткого замыкания PTC охлаждается и возвращается в проводящее состояние.

Большинство цилиндрических ячеек также имеют механизм сброса давления, а в простейшей конструкции используется мембранное уплотнение, которое разрывается под высоким давлением. После разрыва мембраны может произойти утечка и высыхание. Предпочтительной конструкцией являются закрывающиеся вентиляционные отверстия с подпружиненным клапаном. Некоторые потребительские литий-ионные элементы включают в себя устройство прерывания зарядки (CID), которое физически и необратимо отключает элемент при активации до небезопасного повышения давления.На рис. 1 показано поперечное сечение цилиндрической ячейки.

Рисунок 1: Поперечное сечение литий-ионного цилиндрического элемента .
Цилиндрическая конструкция ячейки обеспечивает хорошую цикличность, длительный срок службы и экономичность, но при этом она тяжелая и имеет низкую плотность упаковки из-за пустот.
Источник: Sanyo


Типичные области применения цилиндрических элементов - электроинструменты, медицинские инструменты, ноутбуки и электровелосипеды.Чтобы допускать вариации в пределах заданного размера, производители используют частичные длины ячеек, такие как форматы половин и трех четвертей, а никель-кадмиевые элементы обеспечивают самый широкий выбор элементов. Некоторые из них перешли на никель-металлогидрид, но не на литий-ионный, поскольку эта химия установила свои собственные форматы. 18650, показанный на рисунке 2, остается одним из самых популярных пакетов сотовых ячеек. Типичные области применения литий-ионного аккумулятора 18650 - электроинструменты, медицинские устройства, ноутбуки и электронные велосипеды.

Рисунок 2: Популярный литий-ионный аккумулятор 18650.
Металлический цилиндр диаметром 18 мм и длиной 65 мм. Большая ячейка 26650 имеет диаметр 26 мм.
Источник: Cadex


В 2013 году было произведено 2,55 млрд 18650 ячеек. Ранние энергетические ячейки имели 2,2 Ач; это было заменено ячейкой 2,8 Ач. Новые элементы теперь имеют 3,1 Ач с увеличением до 3,4 Ач к 2017 году. Производители элементов готовятся к 3,9 Ач 18650.

18650 вполне может быть наиболее оптимизированным элементом; он предлагает одну из самых низких затрат на ватт-час и имеет хорошие показатели надежности.По мере того как потребители переходят на плоские конструкции в смартфонах и планшетах, спрос на 18650 ослабевает, и на Рисунке 3 показано избыточное предложение, которое корректируется благодаря спросу на электромобили Tesla, которые в настоящее время также используют этот формат ячеек. По состоянию на конец 2016 года индустрия аккумуляторов опасается нехватки аккумуляторов для удовлетворения растущего спроса на электромобили.

Рисунок 3: Спрос и предложение 18650.
Спрос на 18650 достиг бы пика в 2011 году, если бы не новые потребности в военных, медицинских и дронах, включая электромобиль Tesla. Переход к плоской конструкции в потребительских товарах и большему формату для электрической трансмиссии в конечном итоге приведет к насыщению 18650. Новинка - 21700.
Источник: Avicenne Energy


Существуют и другие цилиндрические литий-ионные форматы с размерами 20700, 21700 и 22700. Между тем, Tesla, Panasonic и Samsung выбрали 21700 из-за простоты производства, оптимальной емкости и других преимуществ.В то время как 18650 имеет объем примерно 16 см, 3 (16 мл) и емкость около 3000 мАч, элемент 21700 имеет объем примерно 24 см 3 (24 мл) с указанной емкостью до 6000 мАч, что существенно удваивает емкость с 50 % увеличения объема. Tesla Motor называет новый 21700 своей компании «

с самым высоким энергопотреблением.

Заряд в секундах, в последние месяцы

(Pocket-lint). Хотя смартфоны, умные дома и даже умные носимые устройства становятся все более совершенными, они все еще ограничены мощностью. Аккумулятор не совершенствовался десятилетиями. Но мы находимся на пороге революции власти.

Крупные технологические и автомобильные компании слишком хорошо осведомлены об ограничениях литий-ионных аккумуляторов.В то время как чипы и операционные системы становятся более эффективными для экономии энергии, мы все еще рассматриваем только один или два дня использования смартфона, прежде чем потребуется подзарядка.

Хотя может пройти некоторое время, прежде чем мы сможем прожить неделю жизни наших телефонов, разработка идет хорошо. Мы собрали все лучшие открытия в области аккумуляторов, которые могут быть с нами в ближайшее время, от беспроводной зарядки до сверхбыстрой 30-секундной подзарядки. Надеюсь, скоро вы увидите эту технологию в своих гаджетах.

NAWA Technologies

Электрод из углеродных нанотрубок с вертикальной ориентацией

Компания NAWA Technologies разработала и запатентовала сверхбыстрый углеродный электрод, который, как утверждается, изменил правила игры на рынке аккумуляторов.В нем используется конструкция с вертикально расположенными углеродными нанотрубками (VACNT), и NAWA заявляет, что он может увеличить мощность батареи в десять раз, увеличить запас энергии в три раза и увеличить срок службы батареи в пять раз. Компания считает, что электромобили являются основным бенефициаром, сокращая углеродный след и стоимость производства аккумуляторов, одновременно повышая производительность. NAWA заявляет, что дальность действия 1000 км может стать нормой, а время зарядки сокращено до 5 минут, чтобы достичь 80 процентов. Технология может быть запущена в производство уже в 2023 году.

Литий-ионная батарея без кобальта

Исследователи из Техасского университета разработали литий-ионную батарею, в которой в качестве катода не используется кобальт. Вместо этого он переключился на высокий процент никеля (89 процентов), используя марганец и алюминий в качестве других ингредиентов. «Кобальт - наименее распространенный и самый дорогой компонент в катодах аккумуляторных батарей», - сказал профессор Арумугам Мантирам, профессор кафедры машиностроения Уолкера и директор Техасского института материалов.«И мы полностью устраняем это». Команда заявляет, что с помощью этого решения они преодолели общие проблемы, обеспечив длительный срок службы батареи и равномерное распределение ионов.

SVOLT представляет батареи для электромобилей, не содержащие кобальт

Несмотря на то, что свойства электромобилей по снижению выбросов широко распространены, все еще существуют разногласия по поводу аккумуляторов, особенно по поводу использования таких металлов, как кобальт. Компания SVOLT, штаб-квартира которой расположена в Чанчжоу, Китай, объявила о производстве безкобальтовых батарей, предназначенных для рынка электромобилей.Помимо сокращения содержания редкоземельных металлов, компания заявляет, что они обладают более высокой плотностью энергии, что может привести к дальности действия до 800 км (500 миль) для электромобилей, а также продлить срок службы батареи и повысить безопасность. Мы не знаем, где именно мы увидим эти батареи, но компания подтвердила, что работает с крупным европейским производителем.

Тимо Иконен, Университет Восточной Финляндии

На шаг ближе к кремниевым анодным литий-ионным батареям

В поисках решения проблемы нестабильного кремния в литий-ионных батареях исследователи из Университета Восточной Финляндии разработали метод производства гибридного анода. , используя микрочастицы мезопористого кремния и углеродные нанотрубки.В конечном итоге цель состоит в том, чтобы заменить графит в качестве анода в батареях и использовать кремний, емкость которого в десять раз больше. Использование этого гибридного материала улучшает характеристики батареи, в то время как силиконовый материал устойчиво производится из золы шелухи ячменя.

Университет Монаша

Литий-серные аккумуляторы могут превзойти литий-ионные, снизить воздействие на окружающую среду

Исследователи из Университета Монаша разработали литий-серные аккумуляторы, способные питать смартфон в течение 5 дней, превосходя литий-ионные.Исследователи изготовили эту батарею, имеют патенты и интерес производителей. У группы есть финансирование для дальнейших исследований в 2020 году, заявив, что дальнейшие исследования автомобилей и использования сетей будут продолжены.

Утверждается, что новая технология аккумуляторов оказывает меньшее воздействие на окружающую среду, чем литий-ионные, и снижает производственные затраты, при этом предлагая возможность питания автомобиля на 1000 км (620 миль) или смартфона в течение 5 дней.

Аккумулятор IBM получен из морской воды и превосходит по своим характеристикам литий-ионный

IBM Research сообщает, что он обнаружил новый химический состав аккумулятора, который не содержит тяжелых металлов, таких как никель и кобальт, и потенциально может превзойти литий-ионные.IBM Research утверждает, что этот химический состав никогда раньше не использовался в комбинации в батареях и что материалы можно извлекать из морской воды.

Производительность аккумулятора многообещающая, при этом IBM Research заявляет, что он может превзойти литий-ионный в ряде различных областей - он дешевле в производстве, он может заряжаться быстрее, чем литий-ионный, и может иметь более высокую мощность и плотности энергии. Все это доступно в аккумуляторах с низкой горючестью электролитов.

IBM Research отмечает, что эти преимущества сделают ее новую технологию аккумуляторов подходящей для электромобилей, и вместе с Mercedes-Benz, среди прочих, компания работает над превращением этой технологии в жизнеспособную коммерческую батарею.

Panasonic

Система управления батареями Panasonic

В то время как литий-ионные батареи повсюду и их количество растет, управление этими батареями, включая определение того, когда у них закончился срок службы, затруднено.Panasonic, работая с профессором Масахиро Фукуи из Университета Рицумейкан, разработала новую технологию управления батареями, которая значительно упростит отслеживание батарей и определение остаточной стоимости литий-ионных в них.

Panasonic заявляет, что ее новую технологию можно легко применить с изменением системы управления батареями, что упростит мониторинг и оценку батарей с несколькими составными ячейками, которые вы можете найти в электромобиле. Panasonic считает, что эта система поможет продвинуться в направлении устойчивого развития, поскольку сможет лучше управлять повторным использованием и переработкой литий-ионных батарей.

Асимметричная модуляция температуры

Исследования продемонстрировали метод зарядки, который приближает нас на шаг ближе к сверхбыстрой зарядке - XFC - который направлен на обеспечение 200 миль пробега электромобиля примерно за 10 минут с зарядкой 400 кВт. Одна из проблем с зарядкой - это литиевая гальваника в батареях, поэтому метод асимметричной температурной модуляции заряжает при более высокой температуре для уменьшения гальванического покрытия, но ограничивает это до 10-минутных циклов, избегая роста межфазной границы твердого электролита, что может сократить срок службы батареи.Сообщается, что этот метод уменьшает деградацию батареи, позволяя заряжать XFC.

Pocket-lint

Песочная батарея дает в три раза больше времени автономной работы

В этом альтернативном типе литий-ионной батареи используется кремний для достижения в три раза большей производительности, чем у современных графитовых литий-ионных батарей. Батарея по-прежнему литий-ионная, как и в вашем смартфоне, но в анодах используется кремний вместо графита.

Ученые из Калифорнийского университета в Риверсайде какое-то время занимались нанокремнием, но он слишком быстро разрушается, и его трудно производить в больших количествах.Используя песок, его можно очистить, измельчить в порошок, затем измельчить с солью и магнием перед нагреванием для удаления кислорода, что приведет к получению чистого кремния. Он пористый и трехмерный, что помогает повысить производительность и, возможно, продлить срок службы батарей. Изначально мы начали это исследование в 2014 году, и теперь оно приносит свои плоды.

Silanano - стартап по производству аккумуляторов, который выводит эту технологию на рынок и получил большие инвестиции от таких компаний, как Daimler и BMW. Компания заявляет, что ее решение может быть применено к существующему производству литий-ионных аккумуляторов, поэтому оно настроено на масштабируемое развертывание, обещая прирост производительности батареи на 20% сейчас или на 40% в ближайшем будущем.

Захват энергии из Wi-Fi

Хотя беспроводная индуктивная зарядка является обычным явлением, возможность захвата энергии из Wi-Fi или других электромагнитных волн остается проблемой. Однако группа исследователей разработала ректенну (антенну, собирающую радиоволны), которая представляет собой всего лишь несколько атомов, что делает ее невероятно гибкой.

Идея состоит в том, что устройства могут включать в себя эту ректенну на основе дисульфида молибдена, чтобы энергия переменного тока могла быть получена от Wi-Fi в воздухе и преобразована в постоянный ток, либо для подзарядки батареи, либо для непосредственного питания устройства.Это может привести к появлению медицинских таблеток с питанием без необходимости во внутренней батарее (более безопасно для пациента) или мобильных устройств, которые не нужно подключать к источнику питания для подзарядки.

Энергия, полученная от владельца устройства

Вы можете стать источником энергии для своего следующего устройства, если исследования TENG принесут свои плоды. TENG или трибоэлектрический наногенератор - это технология сбора энергии, которая улавливает электрический ток, генерируемый при контакте двух материалов.

Исследовательская группа из Суррейского института передовых технологий и Университета Суррея дала понять, как эта технология может быть использована для питания таких вещей, как носимые устройства. Хотя мы еще далеки от того, чтобы увидеть это в действии, исследование должно дать дизайнерам инструменты, необходимые для эффективного понимания и оптимизации будущей реализации TENG.

Золотые нанопроволочные батареи

Великие умы Калифорнийского университета в Ирвине создали треснувшие нанопроволочные батареи, способные выдержать много перезарядок.В результате в будущем батареи могут не разрядиться.

Нанопроволока, в тысячу раз тоньше человеческого волоса, открывает большие возможности для будущих батарей. Но они всегда ломались при подзарядке. Это открытие использует золотые нанопроволоки в гелевом электролите, чтобы избежать этого. Фактически, эти батареи были проверены на перезарядку более 200 000 раз за три месяца и не показали никаких повреждений.

Твердотельные литий-ионные

Твердотельные батареи традиционно обеспечивают стабильность, но за счет передачи электролита.В статье, опубликованной учеными Toyota, рассказывается об их испытаниях твердотельной батареи, в которой используются сульфидные суперионные проводники. Все это означает превосходный аккумулятор.

В результате получился аккумулятор, способный работать на уровне суперконденсатора, полностью заряжаясь или разряжаясь всего за семь минут, что делает его идеальным для автомобилей. Поскольку он твердотельный, это также означает, что он намного стабильнее и безопаснее, чем существующие батареи. Твердотельный блок также должен работать при температуре от минус 30 до ста градусов Цельсия.

Электролитные материалы по-прежнему создают проблемы, поэтому не ожидайте увидеть их в ближайшее время в автомобилях, но это шаг в правильном направлении к более безопасным и быстро заряжаемым аккумуляторам.

Графеновые батареи Grabat

Графеновые батареи потенциально могут быть одними из самых лучших среди имеющихся. Grabat разработал графеновые батареи, которые могут обеспечить электромобилям запас хода до 500 миль без подзарядки.

Graphenano, компания, стоящая за разработкой, заявляет, что аккумуляторы можно полностью зарядить всего за несколько минут и они могут заряжаться и разряжаться в 33 раза быстрее, чем литий-ионные.Разряд также важен для таких вещей, как автомобили, которым требуется огромное количество энергии для быстрого трогания с места.

Нет информации о том, используются ли аккумуляторы Grabat в настоящее время в каких-либо продуктах, но у компании есть аккумуляторы для автомобилей, дронов, мотоциклов и даже для дома.

Лазерные микроконденсаторы

Rice Univeristy

Ученые из Университета Райса совершили прорыв в создании микроконденсаторов. В настоящее время их производство дорогое, но используются лазеры, которые вскоре могут измениться.

При использовании лазеров для выжигания рисунков электродов на листах пластика затраты на производство и усилия значительно снижаются. В результате получается аккумулятор, который может заряжаться в 50 раз быстрее, чем нынешние аккумуляторы, и разряжаться даже медленнее, чем современные суперконденсаторы. Они даже прочные, способны работать после более чем 10 000 сгибаний во время испытаний.

Пенные аккумуляторы

Прието считает, что будущее аккумуляторов - за 3D. Компании удалось решить эту проблему с помощью своей батареи, в которой используется вспененная медь.

Это означает, что эти батареи будут не только более безопасными благодаря отсутствию горючего электролита, но также будут обеспечивать более длительный срок службы, более быструю зарядку, в пять раз более высокую плотность, будут дешевле в производстве и будут меньше, чем существующие предложения.

Prieto стремится в первую очередь помещать свои батареи в мелкие предметы, например, в носимые устройства. Но там говорится, что аккумуляторы можно масштабировать, чтобы мы могли видеть их в телефонах и, возможно, даже в автомобилях в будущем.

Carphone Warehouse

Складной аккумулятор похож на бумагу, но прочный

Jenax J.Аккумулятор Flex был разработан, чтобы сделать гибкие гаджеты возможными. Батарея, похожая на бумагу, складывается и является водонепроницаемой, что означает, что ее можно интегрировать в одежду и носимые устройства.

Батарея уже создана и даже прошла испытания на безопасность, в том числе ее сложили более 200 000 раз без потери производительности.

Ник Билтон / The New York Times

uBeam по воздуху зарядка

uBeam использует ультразвук для передачи электричества. Энергия преобразуется в звуковые волны, неслышимые для людей и животных, которые передаются, а затем снова преобразуются в энергию при достижении устройства.

С концепцией uBeam наткнулась 25-летняя выпускница астробиологии Мередит Перри. Она основала компанию, которая позволит заряжать гаджеты по воздуху с помощью пластины толщиной 5 мм. Эти передатчики можно прикрепить к стенам или сделать предметами декоративного искусства, чтобы передавать энергию на смартфоны и ноутбуки. Гаджетам просто нужен тонкий приемник, чтобы принимать заряд.

StoreDot

StoreDot заряжает мобильные телефоны за 30 секунд

StoreDot, стартап, созданный на базе кафедры нанотехнологий Тель-Авивского университета, разработал зарядное устройство StoreDot.Он работает с современными смартфонами и использует биологические полупроводники, сделанные из встречающихся в природе органических соединений, известных как пептиды - короткие цепочки аминокислот, которые являются строительными блоками белков.

В результате получилось зарядное устройство, способное заряжать смартфон за 60 секунд. Батарея состоит из «негорючих органических соединений, заключенных в многослойную защитную структуру, предотвращающую перенапряжение и нагрев», поэтому проблем с ее взрывом быть не должно.

Компания также объявила о планах создать аккумулятор для электромобилей, который заряжается за пять минут и обеспечивает запас хода до 300 миль.

Пока неизвестно, когда аккумуляторы StoreDot будут доступны в глобальном масштабе - мы ожидали, что они появятся в 2017 году, - но когда они появятся, мы ожидаем, что они станут невероятно популярными.

Pocket-lint

Прозрачное солнечное зарядное устройство

Alcatel продемонстрировал мобильный телефон с прозрачной солнечной панелью над экраном, которая позволит пользователям заряжать свой телефон, просто поместив его на солнце.

Хотя вряд ли он появится в продаже в течение некоторого времени, компания надеется, что он каким-то образом решит повседневные проблемы, связанные с постоянным отсутствием заряда батареи.Телефон будет работать как с прямыми солнечными лучами, так и со стандартным освещением, как и обычные солнечные батареи.

Phienergy

Алюминиево-воздушная батарея обеспечивает пробег на 1100 миль без подзарядки

Автомобиль сумел проехать 1100 миль на одной зарядке аккумулятора. Секрет этого супердиапазона заключается в технологии батареи, называемой «алюминий-воздух», которая использует кислород воздуха для заполнения своего катода. Это делает его намного легче, чем заполненные жидкостью литий-ионные аккумуляторы, что дает автомобилю гораздо больший запас хода.

Бристольская робототехническая лаборатория

Батареи с питанием от мочи

Фонд Билла Гейтса финансирует дальнейшие исследования Бристольской робототехнической лаборатории, которая обнаружила батареи, которые могут питаться от мочи. Этого достаточно, чтобы зарядить смартфон, который ученые уже продемонстрировали. Но как это работает?

Используя микробный топливный элемент, микроорганизмы собирают мочу, расщепляют ее и выделяют электричество.

Звук работает

Исследователи из Великобритании создали телефон, который может заряжаться, используя окружающий звук в атмосфере вокруг него.

Смартфон построен по принципу пьезоэлектрического эффекта. Были созданы наногенераторы, которые собирают окружающий шум и преобразуют его в электрический ток.

Наностержни даже реагируют на человеческий голос, а это означает, что болтливые мобильные пользователи могут подключать свой телефон во время разговора.

Двойная угольная батарея Ryden заряжается в 20 раз быстрее.

Power Japan Plus уже анонсировала новую технологию аккумуляторов под названием Ryden dual carbon. Он не только прослужит дольше и будет заряжаться быстрее, чем литиевые, но его можно будет производить на тех же заводах, где производятся литиевые батареи.

В аккумуляторах используются углеродные материалы, что означает, что они более устойчивы и экологически безопасны, чем существующие альтернативы. Это также означает, что батареи будут заряжаться в двадцать раз быстрее, чем литий-ионные. Они также будут более долговечными, с возможностью выдерживать до 3000 циклов зарядки, а также они более безопасны с меньшей вероятностью возгорания или взрыва.

Натрий-ионные аккумуляторы

Ученые из Японии работают над новыми типами аккумуляторов, которые не нуждаются в литии, таких как аккумулятор вашего смартфона.В этих новых батареях будет использоваться натрий, один из самых распространенных материалов на планете, а не редкий литий, и они будут в семь раз эффективнее обычных батарей.

Исследования натриево-ионных батарей продолжаются с восьмидесятых годов в попытке найти более дешевую альтернативу литию. Используя соль, шестой по распространенности элемент на планете, можно сделать батареи намного дешевле. Ожидается, что в ближайшие 5-10 лет начнется коммерциализация аккумуляторов для смартфонов, автомобилей и других устройств.

Upp

Зарядное устройство для водородных топливных элементов Upp

Переносное зарядное устройство для водородных топливных элементов Upp уже доступно. Он использует водород для питания вашего телефона, не позволяя вам отвлекаться и оставаться экологически чистым.

Одна водородная ячейка обеспечит пять полных зарядов мобильного телефона (емкость 25 Втч на ячейку). И единственный побочный продукт - водяной пар. Разъем USB типа A означает, что он будет заряжать большинство USB-устройств с выходом 5 В, 5 Вт, 1000 мА.

Батареи со встроенным огнетушителем

Литий-ионные батареи нередко перегреваются, загораются и даже могут взорваться.Аккумулятор в Samsung Galaxy Note 7 - яркий тому пример. Исследователи Стэнфордского университета придумали литий-ионные батареи со встроенными огнетушителями.

В батарее есть компонент, называемый трифенилфосфатом, который обычно используется в качестве антипирена в электронике, добавленный к пластиковым волокнам, чтобы помочь разделить положительный и отрицательный электроды. Если температура батареи поднимается выше 150 градусов C, пластмассовые волокна плавятся и выделяется трифенилфосфат.Исследования показывают, что этот новый метод может предотвратить возгорание аккумуляторов за 0,4 секунды.

Майк Циммерман

Батареи, защищенные от взрыва

Литий-ионные батареи имеют довольно летучий слой пористого материала жидкого электролита, расположенный между анодным и катодным слоями. Майк Циммерман, исследователь из Университета Тафтса в Массачусетсе, разработал батарею, которая имеет вдвое большую емкость, чем литий-ионные, но без присущих ей опасностей.

Батарея Циммермана невероятно тонкая, немного толще, чем две кредитные карты, и заменяет жидкость электролита пластиковой пленкой, которая имеет аналогичные свойства.Он может противостоять прокалыванию, измельчению и нагреванию, так как он негорючий. Еще предстоит провести много исследований, прежде чем технология сможет попасть на рынок, но хорошо знать, что существуют более безопасные варианты.

Батареи Liquid Flow

Ученые из Гарварда разработали батарею, которая хранит свою энергию в органических молекулах, растворенных в воде с нейтральным pH. Исследователи говорят, что этот новый метод позволит батарее Flow работать исключительно долгое время по сравнению с нынешними литий-ионными батареями.

Маловероятно, что мы увидим эту технологию в смартфонах и т.п., поскольку жидкий раствор, связанный с батареями Flow, хранится в больших резервуарах, чем больше, тем лучше. Считается, что они могут быть идеальным способом хранения энергии, создаваемой решениями в области возобновляемых источников энергии, таких как ветер и солнце.

Действительно, исследования Стэнфордского университета использовали жидкий металл в проточной батарее с потенциально отличными результатами, заявляя, что напряжение в два раза выше, чем у обычных проточных батарей. Команда предположила, что это может быть отличным способом хранения непостоянных источников энергии, таких как ветер или солнце, для быстрой передачи в сеть по запросу.

IBM и ETH Zurich и разработали жидкостную проточную батарею гораздо меньшего размера, которая потенциально может быть использована в мобильных устройствах. Эта новая батарея утверждает, что может не только обеспечивать питание компонентов, но и одновременно охлаждать их. Обе компании обнаружили две жидкости, которые подходят для этой задачи, и будут использоваться в системе, которая может производить 1,4 Вт мощности на квадратный см, при этом 1 Вт мощности зарезервирован для питания аккумулятора.

Zap & Go Карбон-ионный аккумулятор

Оксфордская компания ZapGo разработала и произвела первую угольно-ионную аккумуляторную батарею, которая уже готова к использованию потребителями.Углеродно-ионный аккумулятор сочетает в себе сверхбыструю зарядку суперконденсатора с характеристиками литий-ионного аккумулятора, при этом полностью пригодный для вторичной переработки.

Компания предлагает зарядное устройство powerbank, которое полностью заряжается за пять минут, а затем полностью заряжает смартфон за два часа.

Цинково-воздушные батареи

Ученые из Сиднейского университета считают, что они придумали способ производства воздушно-цинковых батарей, намного более дешевый, чем существующие методы.Цинково-воздушные батареи можно считать более совершенными, чем литий-ионные, поскольку они не загораются. Единственная проблема в том, что они полагаются на дорогие компоненты.

Sydney Uni удалось создать воздушно-цинковую батарею без необходимости использования дорогих компонентов, а, скорее, с некоторыми более дешевыми альтернативами. Возможно, появятся более безопасные и дешевые батареи!

Умная одежда

Исследователи из Университета Суррея разрабатывают способ, позволяющий использовать одежду в качестве источника энергии.Батарея называется трибоэлектрическим наногенератором (TENG), которая преобразует движение в накопленную энергию. Накопленное электричество затем можно использовать для питания мобильных телефонов или устройств, таких как фитнес-трекеры Fitbit.

Эта технология может быть применена не только к одежде, она может быть интегрирована в тротуар, поэтому, когда люди постоянно ходят по ней, она может накапливать электричество, которое затем может использоваться для питания ламп или в шинах автомобиля, чтобы может привести машину в действие.

Растягиваемые батареи

Инженеры Калифорнийского университета в Сан-Диего разработали растяжимый биотопливный элемент, который может вырабатывать электричество из пота.Говорят, что генерируемой энергии достаточно для питания светодиодов и радиомодулей Bluetooth, а это означает, что однажды он сможет питать носимые устройства, такие как умные часы и фитнес-трекеры.

Графеновая батарея Samsung

Компания Samsung сумела разработать «графеновые шары», которые способны увеличивать емкость существующих литий-ионных батарей на 45 процентов и заряжаться в пять раз быстрее, чем существующие батареи. Чтобы представить это в контексте, Samsung заявляет, что его новый аккумулятор на основе графена может быть полностью заряжен за 12 минут по сравнению с примерно часом для текущего устройства.

Samsung также заявляет, что его можно использовать не только в смартфонах, но и в электромобилях, так как он может выдерживать температуру до 60 градусов Цельсия.

Более безопасная и быстрая зарядка существующих литий-ионных аккумуляторов

Ученые из WMG из Университета Уорика разработали новую технологию, которая позволяет заряжать существующие литий-ионные аккумуляторы до пяти раз быстрее, чем рекомендуемые пределы. Технология постоянно измеряет температуру батареи гораздо точнее, чем существующие методы.

Ученые обнаружили, что существующие батареи фактически могут выходить за пределы рекомендуемых пределов, не влияя на производительность или перегрев. Может быть, нам вообще не нужны другие упомянутые новые батареи!

Написано Крисом Холлом.

.

Смотрите также